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The Yellow River (YR) is the fifth-longest and the most sediment-
laden river in the world. Frequent historical YR flooding events,
however, have resulted in tremendous loss of life and property,
whereas in recent decades YR runoff and sediment load have
fallen sharply. To put these recent changes in a longer-term con-
text, we reconstructed natural runoff for the middle reach of the
YR back to 1492 CE using a network of 31 moisture-sensitive tree-
ring width chronologies. Prior to anthropogenic interference that
started in the 1960s, the lowest natural runoff over the past 500 y
occurred during 1926 to 1932 CE, a drought period that can serve
as a benchmark for future planning of YR water allocation. Since
the late 1980s, the low observed YR runoff has exceeded the nat-
ural range of runoff variability, a consequence of the combination
of decreasing precipitation and increasing water consumption by
direct and indirect human activities, particularly agricultural irriga-
tion. This reduced runoff has resulted in an estimated 58% reduc-
tion of the sediment load in the upper reach of the YR and 29%
reduction in the middle reach.

tree rings | Yellow River | runoff reconstruction | sediment load | water
consumption

The Yellow River (YR) is the cradle of Chinese civilization.
Although the YR accounts for only 3% of China’s water

resources, it irrigates 13% of its cropland (1). Frequent historical
“breach” (flow outside channel) and recent “cutoff” (low flow)
events, mainly in the middle and lower YR basins, have resulted
in considerable losses to lives and properties (2, 3). The upper-
middle YR basins are densely populated and the main bread-
basket of China, where agriculture, particularly in the irrigation
districts of Ningxia and Inner Mongolia (Fig. 1), depends heavily
on YR water resources. A multicentury-scale understanding of
the factors influencing YR runoff is therefore crucial for effec-
tive water resource assessment and management, but the earliest
observational record of YR runoff, beginning in 1919 CE at the
Shanxian gauge station (Materials and Methods), is too short to
study centennial-scale variability.
Since the start of the Anthropocene (4) in the 1960s, an in-

creasing number of large-scale dams and reservoirs have been
built in the main YR channel (5). In addition to this, water con-
sumption by agricultural irrigation along the YR middle course
has risen sharply (6). Human activities have ultimately and irre-
versibly changed YR natural characteristics (7, 8). Low-flow
events have occurred frequently in recent decades, and there
was even no water flow for several months each year in the lower
YR course during 1995 to 1998 CE (9). Moreover, the sediment

load of the YR has declined by ∼90% over the past 60 y (10),
which significantly affects the ecosystems and the delta morphol-
ogy of the YR estuary (11). As such, the amount of YR water
consumed by human activities and the causes of sediment load
reduction over these past few decades continue to be of great
interest (12, 13).
Annually resolved tree-ring-based paleohydrological recon-

structions reflect natural runoff variability, provide longer time
series, and present a broader range of extremes than observa-
tional records (14, 15). Tree-ring data have therefore been used
to reconstruct upper YR runoff variability over recent centuries
(16, 17). Li et al. (18) also reconstructed middle YR runoff, but
the tree-ring data used in that study are primarily derived from
upper areas on and around the Tibetan Plateau and partly out-
side the YR basin (figure 1A in ref. 18), which may not neces-
sarily capture runoff variability in the middle YR course well.
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Additionally, historical documents have been used to reconstruct
YR runoff history (19, 20), but their interpretation is more sub-
jective compared to tree-ring data. Our study, in contrast, is based
on 31 moisture-sensitive tree-ring width chronologies collected
within the upper-middle YR basins (Fig. 1 and SI Appendix,
Table S1), which allowed us to reconstruct natural runoff for
the middle YR course over the period 1492 to 2013 CE. Our
reconstruction complements previous regional studies, and we
also quantify the amount of anthropogenic YR water con-
sumption in recent decades. Furthermore, our study calculates
the reduction in YR sediment load caused by increasing human
water consumption.

Results and Discussion
The first dam on the main YR channel was completed in 1961
CE in Sanmenxia, but the runoff at the Shanxian station prior to
this date, from 1919 to 1960 CE, is considered largely unaltered
by human activities (Materials and Methods). Over this period,
the first principal component (PC1) of the 31 tree-ring chro-
nologies (Materials and Methods) from the upper-middle YR basin
strongly correlates with the Shanxian hydrological-year runoff
(R87; previous August to current July; r = 0.76; P < 0.001) (Fig.
2 A and B). This allowed us to reconstruct YR R87 back to 1492
CE (Fig. 2C) with robust statistical skill (Materials and Methods
and SI Appendix, Table S2). Our reconstruction shares a common
declining trend in recent decades with three other YR recon-
structions from the source (16) to the middle reaches (19, 20) (SI
Appendix, Fig. S1). Our reconstruction is in contrast to the re-
construction of Li et al. (18), who found a rising discharge trend
for the middle reach of the YR since the late 1960s; however, their
reconstruction used many tree-ring samples from far outside of
the YR watershed.
Our reconstruction provides a record of natural YR runoff

variability prior to large-scale human interference. Over the past

522 y, the average runoff of the YR is 410.24 × 108 m3. Most of
the extreme high/low runoff events (Materials and Methods) in
the reconstruction prior to 1960 CE can be verified with his-
torical documents (SI Appendix, Table S3). For example, the
lowest YR flow since 1492 CE occurred during 1926 to 1932 CE,
with a reconstructed average annual runoff of 297.53 × 108 m3

(72.52% of overall average) and observed runoff of 308.87 ×
108 m3 (75.29% of overall average). Documents show that in the
summer of 1928 CE, flow in the main YR tributaries, such as the
Jinghe and Weihe Rivers, was completely cut off, and horses and
chariots could traverse dry riverbeds (21). This flow level could
be a benchmark for future judicious planning of water allocation.
The Fenghe and Weihe Rivers, the main branches of the YR,
were also depleted in 1691 CE as documented (SI Appendix,
Table S3).
Our reconstruction also allows us to model theoretical YR

runoff, without human interference, for the more recent period
from 1960 CE forward and thus to assess the recent effects of
human activities. We found that both observed and recon-
structed runoff declined after the late 1930s, but the divergence
between them has been increasing (Fig. 2C). Particularly, since
the late 1980s, observed runoff has fallen out of its natural range
of variability. We hypothesize that this runoff decline in recent
decades can be explained by two factors.
First, runoff in the middle course of the YR closely relies on

regional precipitation (22), which is determined by the strength
of the Asian summer monsoon (ASM). Our YR runoff recon-
struction is strongly correlated (r = 0.86, 1566 to 2013 CE, P <
0.001; SI Appendix, Fig. S2) with an ASM precipitation re-
construction from the western Loess Plateau (34°–41°N, 100°–107°E;
ref. 23). It should be noted that all 10 tree-ring chronologies
used for the precipitation reconstruction are also part of our YR
runoff reconstruction and that the reconstructions are therefore not
independent (Materials and Methods and SI Appendix, Table S1).

Fig. 1. Thirty-one tree-ring sites (red dots) in the middle-upper reaches of the YR. The thick blue line denotes the YR, and the thin blue line denotes the large
tributaries along the river; blue triangles represent the gauge stations in the main channel, namely, Toudaoguai and Shanxian; the green shaded areas are
irrigation districts. The map in the lower right corner shows the area of the Sanmenxia Reservoir.
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Over the past 80 y, ASM precipitation has shown a decreasing trend
(23), so the amount of water recharge in the branch rivers of the
upper-middle YR course has been largely declining (the oblique
line in SI Appendix, Fig. S2). There are no other regional pre-
cipitation reconstructions with annual resolution beyond our dataset
in the YR basin. Therefore, we employ the Climatic Research Unit
(CRU) (24) and Global Precipitation Climatology Centre (GPCC)
(25) precipitation on the Loess Plateau region (33.5–40.5°N;
100–111°E) as two additional independent series to represent

regional precipitation variability. Both CRU and GPCC pre-
cipitation (from previous August to current July) are significantly
positively correlated (r = 0.72 and r = 0.73, P < 0.001; 1937 to 2013
CE) with the YR runoff reconstruction (SI Appendix, Fig. S3).
This result further confirms the relationship between runoff and
regional precipitation. In addition, periodicity analysis (Materials
and Methods) shows that both the Asian monsoon precipitation
(23) and YR runoff are influenced by atmospheric circulation
systems, such as the El Niño–Southern Oscillation (ENSO) and

Fig. 2. Hydrological year (previous August to current July) runoff reconstruction at the Shanxian gauge station of the YR. Comparison between the observed
(blue) and the reconstructed (red) runoff (A). Comparison of the first difference of A (B). Runoff reconstruction (red) from 1492 to 2013 CE based on the
calibration period 1920 to 1960 CE, which preceded construction of the Sanmenxia Dam (C). The black curve is the 11-y moving average of the reconstruction.
The blue curve superimposed on the reconstruction denotes the observed annual runoff from 1920 to 2013 CE. The shaded area represents the ±2 SE bars. The
short pink horizontal line (lower right) represents the average observed runoff from 1987 to 2013 CE. The solid gray horizontal lines indicate the mean value
of the reconstruction, and the boundaries for extremely high/low runoff, respectively. The dashed gray horizontal lines indicate the boundaries for high/low
runoff, respectively (Materials and Methods).

Fig. 3. Relationship between the WCHA and agriculture in the irrigation districts of Ningxia and Inner Mongolia during 1961 to 2013 CE. Irrigation area (A)
and Irrigated crop yield (B).
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Pacific Decadal Oscillation (PDO). We also found that the asso-
ciation between observed runoff and regional precipitation series,
that is, reconstructed precipitation, CRU precipitation, and GPCC
precipitation (SI Appendix, Fig. S4), has been decreasing in recent
years, which likely results from the intensification of human
activities.
Second, anthropogenic water consumption directly reduced

YR runoff in an unprecedented and irreversible way after the
Sanmenxia Dam was built in 1961 CE. By subtracting the ob-
served runoff (1961 to 2013 CE) from the reconstructed natural
runoff, we obtained a time series of the year-to-year variability in
water consumption by human activities (WCHA, the red line in
Fig. 3). We found that WCHA has increased dramatically since
1961 CE, and even further after more dams came into operation
in 1986 CE. It should be noted that tree-ring width is very sen-
sitive to dry years but less responsive to heavy rainfall events
because if the plant’s demand for water is exceeded growth will
respond no further (26). Therefore, our reconstruction is less
skillful to capture natural runoff of years with excessive pre-
cipitation (and runoff) (SI Appendix, Fig. S5). Since the WCHA
was calculated by subtracting the observed from the modeled
runoff, this computation becomes sensitive to years when the
reconstructed runoff underestimates the true runoff. Therefore,
WCHA values were negative in some years (Fig. 3). If WCHA
had not escalated, our reconstruction model suggests that the
theoretical average runoff (1987 to 2013 CE) would have been
390.88 × 108 m3, almost double the actual observed runoff over
the same period (230.21 × 108 m3). Furthermore, theoretically,
there should have been two high-flow years over this period (2/
27 = 7.41%), but instead there were 25 extreme low-flow years
(92.6%) and no high-flow years at all in the observed record
(Fig. 4).
As we calculated that 64% of the total water consumption by

agricultural irrigation in the most recent two decades (1998 to
2017 CE) was consumed by the Ningxia and Inner Mongolia
irrigation regions (NIMI) (Materials and Methods). Meanwhile,
crop yields and acreage in NIMI were strongly positively corre-
lated with WCHA (Fig. 3 and SI Appendix, Fig. S6), suggesting
that agricultural irrigation in these two regions played a vital role
in the curtailment of YR runoff (27, 28). Agriculture consumes
most of the YR’s water, but with relatively low productivity. As
natural precipitation supply declines and demand for water

increases, water allocation policy should be carefully designed to
balance needs of agriculture, industry, and ecosystems. At the
same time, improvement of water-use efficiency in agriculture
and industry should benefit from technological advances. In
addition to agricultural irrigation, human afforestation also had
impact on water consumption. Revegetation increases evapo-
transpiration, which can cause a decrease in runoff. The expla-
nation ratio (R square) of the relationship between revegetation
(indicated by revegetated area and leaf area index change) and
runoff decrease on the Loess Plateau was 31% (29). This indi-
cates that human afforestation was another important non-
climatic factor influencing water consumption in recent decades.
Ultimately, in addition to climate, the reduction in the runoff of
the YR is mainly due to various human activities, such as direct
(e.g., water withdrawal for irrigation, etc.) and indirect (e.g.,
revegetation/afforestation) human activities.
Another aspect of YR variability influenced by recent an-

thropogenic activities is sediment load. The YR once carried the
largest sediment load in the world (6), but in recent decades that
load has decreased dramatically (10). Sediment reduction can
actually improve the water quality of the YR and also effectively
prevent aggradation of the channel bed downstream. However,
excessive reduction of sediment load will threaten the stability
and persistence of the delta downstream. Therefore, the causes
of the sharp reduction of the sediment load of YR have become
the focus of researchers and policy makers.
We found that WCHA was strongly negatively correlated with

sediment load at Toudaoguai (r = −0.76; P < 0.01; 1961 to 2013
CE) and Shanxian station (r = −0.54; P < 0.01; 1961 to 2013 CE)
(Fig. 5), indicating that WCHA for agricultural irrigation in
NIMI was the primary anthropogenic factor causing reduced YR
sediment load since the 1960s. That is to say, 58% of the re-
duction of sediment load in Toudaoguai (upper reach) and 29%
in Shanxian (middle reach) was associated with WCHA. The
decreasing runoff and water volume in YR weakened hydrody-
namic forces and thereby attenuated the capacity of sediment
transportation and enhanced sediment deposition (9). These fac-
tors reduced sediment load and clarified the water in the YRmain
channel (30). In addition, government-sponsored measures, such
as construction of tens of thousands of check dams, soil and water
conservation, and afforestation on the Loess Plateau, which is the
largest sediment source of YR, also contributed about 30% to the

Fig. 4. Percentage of extremely high/extremely low, high/low, and normal years in the theoretical observed runoff during three periods: 1492 to 1960 CE (I),
1961 to 2013 CE (II and II′), and 1987 to 2013 CE (III and III′).
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reduction of the YR sediment load (6). Check dams can efficiently
block the sediments in gullies, and the increasing vegetation cov-
erage can reduce soil erosion (6, 11, 31). All these measures have
thus prevented sediment transport into the YR (22).

Conclusions. Our study puts the recent runoff records of YR into
a long-term context to assess the effects of human activities. We
found that the curtailed runoff of the YR since the late 1980s
was unprecedented over the past 522 y. Human activities,
mainly expansive agricultural irrigation in the upper course,
have contributed to reduced runoff and sediment load in the
upper-middle course of the YR. If these human activities
continue to intensify, future YR runoff will be further reduced,
and this will negatively impact agriculture, human lives, and
socioeconomic development in the middle and lower basins of
the YR. To reduce the risk of recurring cutoff of streamflow in
the YR lower basin, water should be allocated judiciously.
Cautious policy can balance water allocation among the needs
of agriculture, industry, and ecosystems. From this point of
view, our reconstructed YR natural runoff series are important
for future YR water resource management. In addition, our
study exhibits an example of how to distinguish and quantify
anthropogenic influence from natural variability in global change
studies.

Materials and Methods
Data. Observed runoff and sediment load data (1919 to 2013 CE) from the
Shanxian (34°49′N, 111°09′E) and Toudaoguai (40°16′N, 111°04′E) gauging
stations were obtained from the Bureau of Hydrology, Yellow River Con-
servancy Commission. Sanmenxia Dam was completed in April 1961 CE;
therefore, river discharge after 1961 CE is not considered natural. Water
consumption data for 1998 to 2017 CE were obtained from Yellow RiverWater
Resources Bulletin (www.yrcc.gov.cn/; all data and website information are
available from the authors upon request). The irrigation area and crop yields
data were collected from the Statistical Yearbook of Ningxia and Inner
Mongolia.

Basic Theory of Tree-Ring Runoff Reconstruction. In principle, precipitation in
river basins affects both tree growth and runoff supply. Therefore, moisture-
sensitive tree rings are a powerful tool that can be used to directly re-
construct precipitation and to indirectly reconstruct runoff changes (32–41).
Such reconstructions contribute important data to water resource allocation
and management. There are important preconditions for applying dendro-
chronology to reconstruct runoff in historical periods; for example, rivers

must have no big dams and must be without prominent human disturbance
such as the large-scale withdrawal of irrigation water (38).

Nested Principal Component Reconstruction Method. Our tree-ring network
consists of 31 moisture-sensitive tree-ring width chronologies from the
upper-middle reaches of the YR, comprising in total 1,707 tree-ring cores
(Fig. 1 and SI Appendix, Table S1). Among them, 21 chronologies have al-
ready been published (42–58), 6 chronologies were previously published but
have been updated (47, 59–63), and 4 chronologies represent unpublished
data (SI Appendix, Table S1).

The lengths of the 31 tree-ring chronologies that constitute the network
are not uniform. When we apply traditional principal component re-
construction based on such a matrix, the length of the resulting re-
construction time series is greatly shortened. To maximize the length of YR
runoff reconstruction, we use a nested principal component analysis (PCA)
method to extract PCs from the tree-ring chronologies (64, 65). First, we
permute the chronologies to a step-like matrix with long chronologies on
the left and short chronologies on the right. Then, we perform PCA to ex-
tract PCs step by step. For each step, we use all of the available chronologies.
By designing linear regression models, we use the PC1 series as an in-
dependent variable to enable reconstruction at its highest explanatory
variance. The split calibration–verification method (66, 67) is adopted to test
the stability of the regression models over the common period (1920 to 1960
CE) of the observed runoff and the PC1 series. Consequently, we get N series
of reconstructed runoff where N equals to the number of steps. We also
arrange reconstructions in a step-like matrix named the reconstructed ma-
trix, which has a flat top or bottom. Meanwhile, the statistical parameters
for the verification period, including R2, SE, RE (reduction of error), CE (co-
efficient of efficiency), and ST (sign test) for each reconstruction are also
obtained. Generally, RE and CE values greater than zero indicate a rigorous
model skill. Larger values of RE and CE indicate better results. Moreover, the
values of CE are more rigorous and are typically lower than those of RE (SI
Appendix, Table S2).

Because inhomogeneity generally occurs both in the upper and lower parts
of the tree-ring time matrix, such procedures of the PC reconstruction are
conducted separately for the lower and upper triangular step-like matrix.
Thus, the column number of the reconstructed matrix N equals the sum of
number of steps in the lower and upper triangular matrix minus 1. There
must be one shortest reconstructed series (marked as Xishortest) in the
reconstructed matrix, which is reconstructed by the largest number of
chronologies. Eventually, we merge the reconstructed matrix into one series.
Except for the Xishortest series, which we adopt entirely, we only use the
segment from the start (end) of one step to the start (end) of the next step
for the reconstructed matrix of the lower (upper) triangular part, so that the
statistical parameters of these reconstructed series are also merged into
series according to the corresponding time interval. Due to the differences
of mean value and variance among the reconstructed series, we normalize

Fig. 5. Relationship between WCHA and sediment load from two stations on the YR (1961 to 2013 CE): the Shanxian station (A) and the Toudaoguai
station (B).
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them before the merging procedure. Here we establish the Xishortest base
according to the formula

Yi = Xi + ai
bi

, i = 1, . . .N, i≠ ishortest.

bi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D(Xi)=D(Xishortest )

√
, ai = bi * E(Xishortest) − E(Xi).

X and Y are reconstructed series before and after the unification; E and D
denote calculating the average and variance.

The uncertainty (SE) of the reconstruction was estimated according to the
formula

SE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 2
∑n
i=1

(ŷi − yi)2
√√√

,

where ŷi and yi denote the reconstructed and observed runoff, respectively,
and n is the length of the reconstructed series.

Definition of High/Low Stream Flow Years in This Paper. According to the
Chinese hydrological forecasting standard (68), we defined extreme high/low
flow years based on the relationship between runoff value of each year and
the value of the multiyear average (410.24 × 108 m3, 1492 to 2013 CE). An
extreme high-flow year is one with runoff 20% (runoff >492.30 × 108 m3)
greater than average; a high-flow year is one with runoff 10% (runoff
>451.27 × 108 m3) greater than average; a normal year is one with runoff
within 10% (369.22 × 108 m3 ≤ runoff ≤ 451.27 × 108 m3) of the average; a
low-flow year is one with runoff 10% (runoff <369.22 × 108 m3) below av-
erage; and an extreme low-flow year is one with runoff 20% (runoff <328.20
× 108 m3) below average. During 1492 to 1960 CE (469 y), there were 30 (30/
469 = 6.4%)/26 (5.5%) extreme high/low flow years and 83 (17.7%)/78 (16.6%)
high/low flow years (Fig. 4). During 1961 to 2013 CE (53 y), there should be 1
(1.9%)/4 (7.6%) extreme high/low flow years and 8 (15.1%)/9 (17.0%) high/low
flow years in the reconstructed theoretical runoff. However, during the same

period 1961 to 2013 CE, the observed runoff showed that there were 7
(13.2%)/32 (60.4%) extreme high/low flow years and 2 (3.8%)/5 (9.4%) high/
low flow years.

Periodicity Analysis of the YR Runoff Reconstruction. We calculated the peri-
odicities in YR runoff reconstruction using the multitaper method of spectral
analysis (69), which is a powerful tool in spectral estimation. The result shows
that the YR runoff displays 2.1 to 3.5a, 10.0a, and 24.4a cycles at 95% con-
fidence level and 6.4a, 8.3a, 13.0a, 48.8a, and 204a cycles at 90% confidence
level (SI Appendix, Fig. S7). The interannual and decadal cycles are related to
the frequency domains of ENSO and PDO, respectively (70).

Water Consumption for Agricultural Irrigation. The main WCHA is agricultural
irrigation in Inner Mongolia, Ningxia, Gansu, Shanxi, and Shaanxi provinces
along the YR, with an average total amount of 130.44 × 108 m3/y over the
observation period 1998 to 2017 CE. Water withdrawal for other types of
usage is 52.75 × 108 m3/y (Yellow River Water Resources Bulletin of 1998 to
2017 CE). From 1998 to 2017 CE, the average water consumption for irri-
gation in Ningxia and Inner Mongolia provinces was 30.98 × 108 m3/y (23.75%
of the five provinces) and 52.42 × 108 m3/y (40.19% of the five provinces),
respectively. This indicates that Ningxia and Inner Mongolia were the main
irrigation areas within the YR basin.

Data and Materials Availability. All data are available in the paper or SI
Appendix.
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